
Your secure
communication platform

White Paper

Contents

1 Product specification .. 4

1.1 BabelApp editions .. 4

1.2 Main aspects .. 4

1.2.1 Supported devices .. 4

1.2.2 Main communication services 4

1.2.3 Administration features 4

2 System architecture .. 5

2.1 Server components .. 5

2.1.1 Asynchronous messaging: Messaging Service .. 5

2.1.2 Attachment download Service 6

2.1.3 Address Book .. 6

2.1.4 Communication gateway: API Gateway 6

2.1.5 Message Scheduler .. 7

2.1.6	 Push	notification	Gateway 7

2.1.7 Admin Web Console ... 7

2.1.8 Client Dashboard .. 7

2.2 Communication among

BabelApp Pro servers .. 7

2.2.1 BabelApp name .. 7

2.2.2 Registration among multiple servers 8

2.2.3 Synchronization of contacts

amongst multiple servers 8

2.2.4	 Sending	and	receiving	a message 8

2.3 Network and communication 9

2.3.1 Virtual BabelApp servers and SNI 9

2.3.2 BabelApp clients ... 9

3 Cryptography design10

3.1 Basis for the cryptography design10

3.2 Cryptography model ..10

3.3 Cryptography algorithms11

3.4 Cryptography protocols11

3.4.1 Communication among BabelApp client

applications and servers11

3.4.2 Client registration to BabelApp server

using OTP ...11

3.4.3	 Client	registration	to	a BabelApp	server	

using AD SSO ...11

3.4.4 Proof of the D-H private key possession11

3.4.5	 Client	authentication	to	a BabelApp	server...11

3.4.6 Key generation ..11

3.4.7 Derivation of keys from passwords11

3.5 Application communication encryption12

3.5.1 Contact key agreement12

3.5.1.1 Domain parameters ...12

3.5.1.2 DH key generation ..12

3.5.1.3 Public key value server registration12

3.5.1.4	 Finding	the	shared	secret	Z

between	users	A and	B12

3.5.2 Derivation of the key material

from the shared secret Z13

3.5.2.1 Contact key ..13

3.5.2.2 Key for integrity checks13

3.5.3 Message key (MK) generation13

3.5.4 Data padding ...13

3.5.5 Key encryption ..14

3.5.6 Message encryption ...14

3.5.6.1 Message preparation ...14

3.5.6.2 Encryption ..14

3.5.7 Message integrity ...14

3.5.7.1 Authentication code HMAC14

3.5.7.2	 Message	numbering	and	identification14

3.5.8	 Receiving	and	decrypting	a message14

3.5.8.1 Integrity check of received messages14

3.5.8.2 Message decryption ...15

3.5.9 Attachment encryption15

3.5.10 Attachment decryption15

3.5.11	 Key	transfer	between	user’s devices15

3.5.11.1 Key transfer from the OD to the ND15

3.5.11.2 Overwriting the keys in use with new ones ...16

3.6 Application encryption of data stored

on BabelApp devices ..16

3.6.1 SQLite database ..16

3.6.2 User password ...16

3.6.3 Device key ..17

3.6.4 User authentication to the BabelApp

client application ..17

3.6.5	 User’s DH	keys ...17

3.6.6 Contacts’ keys ...17

3.6.7 Unlocking the BabelApp mobile client

using	a PIN ...17

3.6.8 Unlocking of the BabelApp mobile client

using	a fingerprint ..17

3.6.9 Encryption of messages and attachments

stored on the device ..17

3.6.10 Decryption of messages and attachments

stored on the device ..18

3.6.11 System encryption ..18

3.6.11.1 iOS ...18

3.6.11.2 Android ...18

3.6.11.3 Windows ..18

3.6.11.4 macOS ..18

4 Server platform ..19

4.1 Hardware ...19

4.2 Operating systems ...19

4.3 Java ...19

4.4 Database ..19

4.4.1 Operating system account for PostgreSQL ...19

4.4.2 Superuser account ...19

4.4.3 BabelApp database setup19

4.4.4 Database account creation19

4.4.5 database account authentication type19

4.5 OpenFire ..20

5 Security requirements

and recommendations21

5.1 Strong password ...21

5.2 iOS ...21

5.3 Android ...21

5.4 Windows ..21

5.5 macOS ..21

4

1. PRODUCT SPECIFICATIONS

BabelApp	is	a platform	for	secure	communication.	
It provides secure sending and storing of
encrypted messages and documents. BabelApp
is available on mobile (iOS, Android) and desktop
(Windows, macOS) platforms.

BabelApp uses strong cryptography algorithms
and protocols, based on international standards.
The BabelApp platform is composed of servers
and clients for mobile and desktop devices with
different	operating	systems.

1.1 BABELAPP EDITIONS

BabelApp is available in two basic editions:

Edition for public non-commercial use (please note that

some requirements need to be met – for more information

please refer to www.babelapp.com). This service is running on

the following address: babelapp.com:443 and is being opera-

ted by OKsystem a.s., the developer and owner of BabelApp.

Edition for commercial use called BabelApp PRO with full

functionality	and	integration	capabilities.	A BabelApp PRO

server can be operated on-premise or in the cloud and can

be integrated with 3rd party applications and systems.

1.2 MAIN ASPECTS
BabelApp provides encrypted communication on

supported devices and integrity checks among all the end-

points involved in data transfer. As this document explains,

BabelApp does not require the user to possess any digital

certificates.	 The	 platform	 is	 based	 on	 servers	 (BabelApp	

servers) that securely communicate with client devices as

well as among themselves through the internet.

1.2.1 SUPPORTED DEVICES

BabelApp client applications are available on all major

mobile and desktop platforms.

• client for iOS

• client for Android

• client for BlackBerry

• client for PC with Windows

• client for Mac with OS-X

A user	can	have	multiple	registered	devices,	regardless	of	

the types of registered devices.

Each device can be connected to multiple servers.

1.2.2 MAIN COMMUNICATION SERVICES

BabelApp servers provide central communication

services:

• Central contact directory

• Distribution and synchronization of users’ public keys

• Communication among multiple BabelApp

servers for public key synchronization and

cross-server communication

• Asynchronous delivery of messages and

attachments	to	the	recipient’s devices

• Synchronization of sent messages to all of the

sender’s devices

• Temporary storage of encrypted attachments –

until downloaded by all recipients

•	 Gateway	for	the	sending	of	push	notifications

• Distribution of Message sent, delivery and read

receipts

•	 Distribution	of	“Undeliverable”	notifications	

• Communication gateway with REST API for easy

integration with applications and programmable

devices for encrypted message distribution and

business processes automation (PRO)

1.2.3 ADMINISTRATION FEATURES

BabelApp PRO provides full control over the

infrastructure to the company administrator.

• Web console for system administration

• Import of User information from LDAP/AD

• Synchronization of user accounts changes

directly from LDAP/AD

• Possibility to create and manage user accounts

and groups for both internal and external users

•	 	User	 device	 registration	 using	 a one-time	

password or LDAP authentication

• Removal of registered devices

• Key revocation

• User blocking

• Reset of server accounts on remote servers

•	 	Deletion	of	a remote	server	from	the	local	server	

database

• System logging of server and user events

•	 Traffic	&	usage	statistics

5

2. SYSTEM ARCHITECTURE

BabelApp	 provides	 a robust	 business	 platform	 for	

encrypted communication between mobile devices

and workstations including easy integration with

business applications and multifunction printers/

scanners.

To be able to send messages to recipients who have

accounts	on	different	BabelApp	servers	than	the	sender,	

BabelApp implements communication among servers.

To achieve high server availability, the BabelApp platform

supports cluster implementation resistant to failure.

2.1 SERVER COMPONENTS

The	BabelApp	server	consists	of	a set	of	functional	

components:

• Asynchronous messaging service

• Service for attachment downloading

• Central directory of contacts

• Communication Gateway with API

• Gateway for alert distribution

• Scheduler of server-sent messages

• Platform management via web administration

• Personalized web pages for users

To support these services, the BabelApp server uses

(via connectors) network directory services:

• LDAP connecter

• SSO connecter

2.1.1 ASYNCHRONOUS MESSAGING:
MESSAGING SERVICE

The basic service of the BabelApp servers is the support

of asynchronous messaging based on the XMPP protocol.

Messages are in JSON format and contain all the metadata

needed to process message delivery, integrity checking,

transport of message encryption keys, attachment

metadata etc.

Messages can be sent to multiple recipients and can have

multiple parts, each part carries information about the

protocol version for which the message is intended. The

server	checks	recipient’s addresses	and	protocol	versions	

supported	 by	 the	 recipient’s devices	 and	 delivers	 the	

suitable parts of the message with the same or the

closest lower protocol version.

Admin web console

Firewall Firewall

BabelApp
server

Directory Server

Enterprise Apps

Messaging server
Attachment server

Messaging gateway

BabelApp
Windows PC,
macOS and mobile

Canon MFP

Enterprise LAN DMZ Internet

Internet

6

The server receives an asynchronous message and

returns	a confirmation	receipt	to	the	sender	and	stores	

the	 message	 until	 A)	 the	 server	 receives	 a delivery	

confirmation from the recipients’ client application

or B) until the message expiration date and time is

reached. In either case, the message is deleted from the

server right after.

Recipients can have multiple devices registered. The

server will be trying to deliver messages to all of

the	 recipient’s devices.	 Messages	 are	 considered	 as	

delivered, if it has been delivered to at least one of the

recipient’s devices.

Once the recipient decrypts the message, the server

sends	a read	receipt	to	the	sender.

In case the message delivery was not successful, the

server	sends	a „Message	was	not	delivered”	notification	

to the sender.

In case the sender has multiple devices registered to

the account, the server always attempts to synchronize

sent	messages	across	all	of	the	sender’s devices.

2.1.2 ATTACHMENT DOWNLOAD SERVICE

The possibility to send documents in the form of

attachments can be enabled or disabled by the BabelApp

server administrator. Messages contain only attachment

metadata. The attachments can be downloaded using

a link	 sent	 along	 with	 the	 message.	 Attachments	 are	

encrypted in the same way as messages, please refer to

3.5.9. for more information. Administrators can setup the

maximum size of attachments and maximum expiration

period – time after which attachments are automatically

deleted from the server, regardless of their delivery

status.

2.1.3 ADDRESS BOOK

The	 server	 provides	 a central	 address	 book	 service	 and	

group management.

Contacts are senders and recipients of messages and their

public keys are the basis of the cryptographic model for

message encryption.

Roles	are	used	to	setup	permissions	to	a group	or	multiple	

groups. Users have the permissions of all the roles assigned

to them. Currently, two permissions are implemented:

There are two types of memberships:

• List	 –	 find	 contacts	 in	 a group	 with	 a partial	
match of their name.

• Add	–	add	a group	to	the	user’s address	book.

User’s address	 books	 are	 created	 on	 the	 server	 and	

synchronized	 to	 all	 of	 the	 user’s devices.	 Users	 can	

add contacts found through the “List” permission

or contacts found using their BabelApp username

(name#babelapp_server).	 User’s address	 books	

eliminate the need to synchronize extensive amounts

of contacts to all users, allowing effective adding of

contacts and communication with them.

The edition of BabelApp for public and non-commercial

use requires adding all contacts using their BabelApp

username (case insensitive) and does not support

searching	for	contacts	with	a partial	name.

2.1.4 COMMUNICATION GATEWAY:
API GATEWAY

Bi-directional distribution of encrypted messages and

documents	 among	 all	 end-points	 requires	 a complete	

implementation of the BabelApp protocol, which is

available	as	a part	of	BabelApp	iOS,	Android,	Windows	and	

macOS applications.

To allow for the distribution mechanism (one-way

communication) of encrypted messages and documents

even	from	a wide	spectrum	of	applications	and	intelligent	

programmable	 devices,	 a communication	 gateway	 with	

a simple	 REST	 API	 has	 been	 developed	 as	 part	 of	 the	

BabelApp PRO edition. This allows simple integration of

the server with 3rd party applications. You can distribute

encrypted messages and attachments from your company

information systems and applications directly to devices

with BabelApp client applications.

The	 integrated	 server	 application	 has	 a special	 account	

on the server, the so called API contact. The private AK

key of the application is stored in an encrypted form in

the communication gateway storage, which has the client

part of the BabelApp protocol implemented and encrypts

the data on behalf of the application. The application

receives the API contact name and randomly generated

authentication password which consists of alphabetical

characters: {12346789ABCDEFGHJKMNPQRTUVWXY

abcdefghjkmnpqrtuvwx}, with the length of 128 bits.

To store the D-H private key securely, the application

generates	 a random	 salt	 and	 from	 the	 application	

password and the salt value the application generates the

BK key, which is 128 bits long.

BK = PBKDF2[hmacWithSHA1]

(password, salt, iteration_number, 128)

Number of iterations: 1 000

The private AK key is encoded in the ASN.1 form with

regards	 to	 the	PKCS#8	 (RFC	5208)	specification	and	the	

final	structure	is	aligned	using	PKCS#7	padding.

The private AK key of the application is encrypted using

the BK key and the AES algorithm in the CBC mode. The

initialization	vector	has	a value	of	0.

eAK = ENC-CBC[BK,0](AK)

7

A thusly	encrypted	eAK	private	 key	 is	 stored	along	with	

the salt value in the database in the form of the ASN.1

structure.

The application communicates with the gateway using an

SSL channel. The mechanism of successful private AK key

decryption is used for authentication purposes. As soon as

the gateway receives the decrypted private key from the

AK application, it can encrypt messages using the same

process	as	a BabelApp	client	application.	Please	refer	to	

chapter 3.5.6.

2.1.5 MESSAGE SCHEDULER

The BabelApp server allows the administrator to schedule

and	automatically	distribute	messages	to	a selected	user	

base. Messages, possibly with attachments, can be sent

right away or at scheduled times.

Message distribution from the server uses the

communication gateway technology, please refer to 2.1.4.

2.1.6 PUSH NOTIFICATION GATEWAY

Mobile devices with iOS and Android can receive push

notifications,	 which	 inform	 users	 about	 messages	 that	

are	waiting	for	delivery	on	the	server.	Push	notifications	

can be received even if the application is running in the

background.

Push	 notifications	 are	 distributed	 using	 the	 Apple/

Google	 notification	 infrastructure.	 The	 BabelApp	

Push	 Notification	 Gateway	 only	 sends	 requests	 for	

a notification	distribution	to	Apple/Google.	Requests	for	

push	notification	delivery	must	be	electronically	signed	

using	the	BabelApp	Push	Notification	Gateway’s private	

key	 and	 a certificate,	 which	 is	 registered	with	 Apple’s/

Google’s notification	servers.

Use	of	push	notifications	 can	be	enabled	or	disabled	by	

the administrator.

Every BabelApp server has its own private key and

certificate	 issued	 by	 the	 OKsystem	 a.s.	 certification	

authority and is used to sign all requests which are sent

to	 the	Push	Notification	Gateway.	The	Push	Notification	

Gateway (after verifying the signature) creates and

signs	 a new	 push	 notification	 request	 on	 behalf	 of	 the	

sender’s device	 and	 sends	 it	 to	 an	 appropriate	 Apple/

Google	notification	server.

Push	 notification	 requests	 and	 the	 notifications	

themselves do not contain any data about the actual

messages.

2.1.7 WEB ADMIN CONSOLE

Administration of the BabelApp PRO server is done

using	a web	admin	console,	which	is	published	on	a web	

address, e.g. https://babel.domain:port. Each domain

consists	of	a DNS	organization	name,	where	the	BabelApp	

PRO server is placed.

The	 default	 port	 is	 9091.	 A different	 port	 address	 can	

be chosen during the installation. Each server must

have	 a certificate	 installed	 for	 the	 domain.	 Certificates	

are	 issued	 by	 the	 OKsystem	 a.s.	 certification	 authority	

based	 on	 certificate	 requests	 created	 by	 BabelApp	

administrators.

2.1.8 CLIENT DASHBOARD

Users,	who	have	an	account	 registered	with	a BabelApp	

PRO server, have their personal BabelApp web pages.

The status of their devices can be viewed and new device

registration requests can be created on this page.

All requests must be approved by the company

administrator.	 Once	 approved,	 a QR	 code	 with	 an	

OTP is displayed on the personal web page for easy

authentication of the new device.

Administrators	 can	 set	 up	 a URL	 for	 easy	 access	 to	 the	

personal web pages and enable authentication using SSO.

2.2 COMMUNICATION AMONG BABELAPP PRO SERVERS

BabelApp users can have accounts on more than one

server, which allows them to directly communicate

with all the contacts registered on such servers.

Every user can decide which server will be used as

default.

BabelApp cross-server communication has been

developed to allow users to communicate also with

contacts	on	different	servers.

If	 a user	 is	 registered	 to	multiple	 servers,	 one	of	 them	

will facilitate communication with other servers.

2.2.1 BABELAPP NAME

Every	user	is	identified	in	the	BabelApp	network,	using	

a unique	BabelApp	address:	

 babelname#babelapp_server

Where: Name – user (account) name in the BabelApp
server account database.

	 	 	babelapp_server	-	fully	qualified	DNS	name	
(FQDN) of the BabelApp server, for which
a digital	certificate	has	been	issued	by	
OKsystem.

8

A DNS	type	A record	must	exist	for	the	babelapp_server	name.

SRV records are used for the communication ports of the

BabelApp servers. If non-existent, implicit ports are used.

The implicit port for BabelApp client application connection

is 5222.

Example:

BabelApp server with FQDN babel.oksystem.cz is

accessible on the internet address 193.222.130.33

TCP port for client application connection to the

_babel service is 5222

Corresponding DNS records are:

babel.oksystem.cz A 193.222.130.33

_babel._tcp.oksystem.cz. 86400 IN SRV 10 10 5222

babel.oksystem.cz

2.2.2 REGISTRATION AMONG MULTIPLE
SERVERS

For cross-server communication, it is necessary to register

servers’ accounts (similarly to user account registration).

Server administrators can deny the registration of one,

more or all external servers and therefore not allow cross-

server communication with such servers.

If it is desired for server S1 to be registered to server S2,

server	S1	sends	a registration	message	with	the	SERVER	

type	 to	 server	 S2.	 Server	 S2	 verifies	 that	 server	 S1	 has	

a valid	certificate	signed	by	OKsystem	and	issued	for	the	

domain	listed	in	the	registration	message.	If	the	certificate	

is	 found	 to	 be	 valid,	 server	 S2	 also	 verifies	 that	 server	

S1 is not on the S2 block list. Block lists are managed by

BabelApp server administrators.

2.2.3 SYNCHRONIZATION OF CONTACTS
AMONGST MULTIPLE SERVERS

A registered	sever	S1	can	request	Address	Book	updates	

from server S2 and obtain public keys from all server S2

contacts to enable server S1 to encrypt all the metadata

about messages from S1 contacts intended for S2

recipients.

Server S1 can thereafter send metadata information

to server S2, which then informs its recipients about

messages that are available to be downloaded directly

from server S1.

2.2.4	 SENDING	AND	RECEIVING	A MESSAGE

User	device	U1#S1	sends	message	Z to	its	implicit	BabelApp	

server	S1.	Server	S1	stores	message	Z and	creates	a new	

message M which only contains metadata information

about the sender, conversation and message expiration.

Consequently, server S1 delivers the message M via Server

S2 to the contact U2#S2. Once the message M is delivered,

the contact U2#S2 is then able to retrieve the URL and

message	 Z	 identification.	 Contact	 U2#S2	 then	 connects	

to the given URL and authenticates itself by proving that it

possesses a private key that can decrypt message Z. Once

verified,	message	Z	is	downloaded	to	the	device.

Server
S1

User device
U1#S1

User device
U2#S2

Server
S2

e
1

Message Z for U2#S2,
encrypted with D-H
(U1#S1, U2#S2)

Message M with metadata about Z intended for U2#S2,
encrypted with D-H (S1, U2#S2)

1

2

34 Message
M delivery

Message
Z download

Diagram describing cross-server message delivery

9

2.3 NETWORK AND COMMUNICATION

BabelApp	 server	 is	 typically	 located	 within	 a so-called	

"Demilitarized zone" of corporate networks, which is

connected	to	a router	and	firewall	system	with	an	internal	

network and internet. Routers can use Network Address

Translation (NAT) to access the Internet. Firewall settings

must	allow	connections	for	a combination	of	protocol/IP	

address/port between BabelApp server and an internal

network or Internet. Addresses and ports listed in the

following picture are only for demonstration purposes,

specific	installations	may	be	different.

2.3.1 VIRTUAL BABELAPP SERVERS AND SNI

BabelApp servers and clients support SNI (Server Name

Indication) technology within TLS communication – multiple

virtual BabelApp servers / domains can run using the same

public IP address. SNI is based on the mechanism of TLS

expansion within which the BabelApp client provides the

TLS	server	with	a DNS	name	of	the	virtual	BabelApp	server	

to which the communication will be re-directed.

Support of the SNI technology allows for BabelApp server

hosting in the cloud.

SNI technology is described in detail in RFC 4366 and RFC 6066.

2.3.2 BABELAPP CLIENTS

BabelApp clients are available on all major mobile

and desktop platforms; please refer to 1.2.1 for more

information. Each user can have more than one device

registered under their account.

Every BabelApp client application has the complete

application protocol for encrypted communication and

encrypted storage of data implemented on the device.

BabelApp clients communicate with BabelApp servers

using	 cellular	 data,	 wifi	 or	 company	 LAN/wifi.	 To	

communicate	with	a server,	devices	must	be	registered	to	

a BabelApp	server	under	a user’s account	and	must	have	

the DNS of the BabelApp server and communication port

set correctly.

BabelApp clients can be registered to multiple servers,

but one is always set as default.

Mobile BabelApp client applications can send and

receive encrypted messages via SMS. In this case, it is not

possible to send or receive documents. When sending

SMS messages, there is no communication between the

client application and BabelApp server. The length of

such	 message	 is	 not	 limited	 to	 a maximum	 number	 of	

characters. Sending encrypted SMS messages is useful

when no data connection is available or if using other than

standard data communication channels is desired.

FW EXT
NAT

BabelApp Server
babel.company.dmz

192.168.0.10

Client Active Directory (AD)
Domain Controller (DC)

dc.company.local
10.0.0.10Apple

Push notification
Service (APN)

Google
Cloud Messaging
for Android (GCM)

FW INT
routing

TCP 9081
(HTTPS)

TCP 5222
(XMPP)

TCP 443
(HTTPS)

TCP 5223
TCP 443

TCP 5228–5223
TCP 443

TCP 9081 (HTTPS) = BabelApp Attachment: sending attachments
using the protocol HTTPS (Hypertext Transfer Protocol Secure)

TCP 5222 (XMPP) = BabelApp Messaging Protocal: sending messages using
the protocol XMPP (Extensible Messaging and Presence Protocol)

TCP 9091
(HTTPS)

TCP 636
(LDAPS)

domain: company.dmz

DMZ
domain: company.local

Local (LAN)
domain: company.com

babel.company.com
80.0.0.50

Internet

10

3. CRYPTOGRAPHY DESIGN

3.1 BASIS FOR THE CRYPTOGRAPHY DESIGN

During the cryptography design, we worked with the

following requirements:

• The major goal was to secure the content of the

communication, not the fact that the communication

actually took place.

• Application encryption will be used in between the

end-points during the data transfer.

• Application encryption will be used for data storage

on devices.

•	 	User	public	 key	 certificates	or	device	 certificates	will	

not be used.

• The server will be used for:

- user account administration

- distribution and synchronization of public keys

- asynchronous communication among devices with

BabelApp application

• Server does not poses any keys that can be used to

decrypt messages.

• Server can only access information about users,

devices and message metadata

• Transported messages will not be stored on BabelApp

servers	for	a longer	period	of	time	than	it	is	necessary	

for successful message delivery

• Servers are under the organisations’ own

administrations

• Users can have more than one device (e.g. smartphone,

tablet, PC, laptop…) – messages will always be sent

from one device but synchronized to other devices

under the account

• Standard strong cryptography algorithms and

recommended parameters and operation modes will

be used

• Techniques for elimination of active attacks will be used

– checks of integrity, authenticity and message sequence

– strictly before any attempt to decrypt messages

3.2 CRYPTOGRAPHY MODEL

The following diagram describes the conceptual crypto-

graphy model. The model describes the application

encryption of data and does not contain integrity checks

on the JSON level of the messages.

The TLS protocol is used for all communication between

the clients and the server, as well as the application

encryption. System services for data encryption are used

for data storage on the user devices.

BabelApp User A BabelApp User BabelApp server

XMPPAuthentication & proof of
KAPRIV posession & KAPUB registration

Contacts A

Data at rest encryption Data in move encryption

SSL

Authentication & proof of
KBPRIV posession & KBPUB registrationKAPUB

KBPUB

KCPUB

KDPUBSSL

SSL SSL

KAPUB

KAPRIV

BabelApp
 Password A

******** Device Key A

Contact Key A-B

Internet/GSM
Network

Message Key 1

Message Key 1

Message Key 2

Message Key 2

Message 1

Message 1

Message 2

Message 2

KAPUB

KBPUB

KCPUB

KDPUB

KBPUB

KBPRIVDiffi e-Hellmann Key Agreement

Contacts B

Data at rest encryption

BabelApp
 Password B

********Device Key B

Message Key 2Message Key 1

Message 2Message 1

KAPUB

KBPUB

KCPUB

KDPUB

11

3.3 CRYPTOGRAPHY ALGORITHMS

BabelApp uses the following cryptography algorithms:

•	 Diffie-Hellman	according	to	NIST	SP	800-56A

• AES 128, AES 256 according to paragraph 5 FIPS

PUB 197

• PBKDF2 according to PKCS#5 v2

• SHA-2 according to FIPS PUB 180-4, paragraph

6.2	with	a 256	bit	thumbprint

• HMAC according to RFC 2104 and extension for

the use of hash algorithms SHA2 according to

RFC 4868

The algorithms mentioned above were used in the

hereunder described cryptography schemas and

protocols.

3.4 CRYPTOGRAPHY PROTOCOLS

With the use of keys and cryptography algorithms the

hereunder standard protocols and application encryption

were implemented for communication and device storage.

3.4.1 COMMUNICATION AMONG BABELAPP
CLIENT APPLICATIONS AND SERVERS

Communication among BabelApp client applications

and BabelApp servers takes place within the Transport

Layer Security protocol (TLS v1.2.) according to RFC5246.

To establish TLS communication, the servers is equipped

with	 a digital	 certificate	 issued	 by	 OKsystem.	 Such	

a certificate	 is	 part	 of	 the	 BabelApp	 application	 source	

code on all platforms to ensure server authenticity.

JSON messages with integrity checks are sent as part of

the TLS connection (please refer to 3.5.7.) and transport

(among other information) application encrypted

messages and attached documents between the end-

points (please refer to 3.5.6. and 3.5.9.).

3.4.2 CLIENT REGISTRATION TO BABELAPP
SERVER USING OTP

The registration of client devices uses One Time Password

Protocol	 authentication,	 which	 is	 based	 on	 a randomly	

generated password and password imprint derivation

using PBKDF2 according to NIST sp800-132.

3.4.3		 	CLIENT	REGISTRATION	TO	A BABELAPP	
SERVER USING AD SSO

BabelApp PRO client allows for alternative registration of

company	users,	who	have	an	account	in	a company	LDAP	

directory (typically Active Directory), based on the Single

Sign On system.

3.4.4 PROOF OF THE D-H PRIVATE KEY
POSSESSION

The proof of possession of the private key to the presented

Public Key value is done during the user device registration

to	the	BabelApp	server	based	on	the	Diffie-Hellman	Proof	

of Possession according to RFC 6955 protocol.

3.4.5 CLIENT AUTHENTICATION
TO	A BABELAPP	SERVER

A random	authentication	password	AH	is	generated	on	the	

BabelApp	server,	based	on	the	client	device’s registration.	

The	 password’s 160	 bit	 long	 authentication	 imprint	 AS,	

derived using PBKDF2:

AS = PBKDF2[hmacWithSHA1]

(password_AH, salt, number_of_itterations, 160)

The	authentication	password	is	sent	within	a TLS	session	

to	 the	 user’s device	 to	 be	 used	 for	 future	 client-server	

authentications.

BabelApp clients automatically authenticate themselves

to registered servers at the moment of launch, assuming

that	a connection	to	the	server	can	be	established.	User	

authentication to the client is not required for the client

to authenticate itself to the server.

3.4.6 KEY GENERATION

Generation of random cryptography material (encryption

keys, authentication keys, DH key pairs) is based on random

number generators dependent on client platforms.

3.4.7 DERIVATION OF KEYS FROM PASSWORDS

Keys can be derived from passwords using the PBKDF2

function	according	to	PKCS#5	v2,	using	a pseudorandom	

HMAC	 function	 with	 SHA256	 and	 a high	 number	 of	

iterations.

12

3.5 APPLICATION COMMUNICATION ENCRYPTION

Application encryption forms the basis of security of

communication between BabelApp clients and local

data storage on user devices. Application encryption is

based	 on	 a combination	 of	 symmetrical	 cryptography	

algorithms with secret keys and non-symmetrical

cryptography with public keys. Implementation of the

cryptography model (3.2.) is described in detail below.

3.5.1 CONTACT KEY AGREEMENT

The	Diffie-Hellman	protocol	 (described	 in	RFC	2631	and	

ISO standards 14883-3, ANSI X9.62 and NIST SP 800-56A)

is	used	to	reach	a key	agreement.	

Implementation	of	the	Diffie-Hellman	protocol	in	BabelApp	

uses multiplicative integer group modulo p, with parameters

p, g and q, according to RFC 5114, paragraph 2.3:

the bit length of multiplicative group of order p is 2048-bit

the bit length of prime number multiplicative subgroup

generated q of order p is 256-bit

3.5.1.1 DOMAIN PARAMETERS

Values of domain parameters p, q, q (hexadecimal system):

p = 87A8E61DB4B6663CFFBBD19C651959998CEEF608660
DD0F25D2CEED4435E3B00E00DF8F1D61957D4FAF7DF45
61B2AA3016C3D91134096FAA3BF4296D830E9A7C209E0
C6497517ABD5A8A9D306BCF67ED91F9E6725B4758C022
E0B1EF4275BF7B6C5BFC11D45F9088B941F54EB1E59BB
8BC39A0BF12307F5C4FDB70C581B23F76B63ACAE1CAA
6B7902D52526735488A0EF13C6D9A51BFA4AB3AD834
7796524D8EF6A167B5A41825D967E144E5140564251CCAC-
B83E6B486F6B3CA3F7971506026C0B857F689962856DE
D4010ABD0BE621C3A3960A54E710C375F26375D7014103
A4B54330C198AF126116D2276E11715F693877FAD7EF09
CADB094AE91E1A1597

g=3FB32C9B73134D0B2E77506660EDBD484CA7B18F21
EF205407F4793A1A0BA12510DBC15077BE463FFF4FED-
4AAC0BB555BE3A6C1B0C6B47B1BC3773BF7E8C6F629
01228F8C28CBB18A55AE31341000A650196F931C77A57F2
DDF463E5E9EC144B777DE62AAAB8A8628AC376D282D6ED
3864E67982428EBC831D14348F6F2F9193B5045AF2767164
E1DFC967C1FB3F2E55A4BD1BFFE83B9C80D052B985D182
EA0ADB2A3B7313D3FE14C8484B1E052588B9B7D2BBD2DF-
016199ECD06E1557CD0915B3353BBB64E0EC377FD02837
0DF92B52C7891428CDC67EB6184B523D1DB246C32F6307
8490F00EF8D647D148D47954515E2327CFEF98C582664B-
4C0F6CC41659

q=8CF83642A709A097B447997640129DA299B1A47D1EB-
3750BA308B0FE64F5FBD3

3.5.1.2 DH KEY GENERATION

Every	BabelApp	user	application	generates	a private	key	

X (random number 1 < X < q - 1), which is kept in secret.

A corresponding	public	key	is	calculated	as	Y	=	g^X	mod	p.

Comment 1:
Users generate a DH key pair on every device which is registered to their
account on BabelApp servers.
In case the user registered a device to the server before, he is allowed to
overwrite the original keys with a new set of keys, remove previously
registered devices and revoke the original key or transfer the original DH
key to the newly registered device.

For a detailed description of the secure key transfer between devices please
refer to 3.5.11.

Comment 2:
Private key X is encrypted on the device using a device DK key, as described
in chapter 3.6.5.

Example 1:

User	A generates	a random	private	key	Xa	and	calculates	

a public	 key	 Ya	 using	 domain	 parametrs	 (p,	 q,	 g)	 a Ya	 =	

g^Xa	mod	p

Xa = 1973D625770FCD1058C9474213DD3E7905DEAA4
A2226D2FA26A08504D8700ABF

Ya = 3415B6FD8C2531D0DDC5E38A7FFD6E0D03EB5446
94B6A74D0B768B57D1CEC6A9D8B18F6BB920B6382ED
FCF113DDEB549E5BC272F031984514C2F87435A7B0668
F850A21B82E2C1EDADE3D2BE7358BB97859B0A22B0134
AB457C77EC6D3308188C197BD4D8FFE4D698DC4805715
E049043290B2EE11D9F8F834326F11460C56A743925D29
C1A862D51BF13556F1D9A44A1D1EDC80E78052AC97A4A
2D998045EFEDCF6C3463D88C69BA9CA904CD53BA5E0D7
6313A29FC1CB307385FE047B7FBD176C1BB35D57F9B7C4
AA63B670164BA59A4EB7F1ACB525C55F74C454E0F3888F
79152A7127E6976CCEF821391591005551064217193538
448317302609964318259122758009CEF82139159100555
1064217193538448317302609964318259122758009

3.5.1.3 PUBLIC KEY VALUE SERVER REGISTRATION

Public	DH	key	value	registration	is	part	of	the	first	user’s device	

registration to the server. The DH value is generated during

the installation of BabelApp. Users need to be successfully

authenticated for the registration to succeed. Based on the

server	settings,	users	can	be	authenticated	using	a name	and	

One	Time	Password	(typically	scanned	from	a QR	code),	or	

using LDAP authentication.

After	 a successful	 sign	 in	 every	 device	 needs	 to	

cryptographically prove that is possesses the private part of

the DH key which was sent to the server. This proof is based

on	Diffie-Hellman	Proof	of	Possession	according	to	RFC	6955.

After	 a successful	 registration	 the	 persistent	

authentication data is returned by the server to the client

for future sign-ins.

Users’ registered public keys are provided to all devices,

which meet the requirements of user visibility in the address

book and have requested synchronization of the contact.

3.5.1.4	 	FINDING	 THE	 SHARED	 SECRET	 Z BETWEEN	
USERS	A AND	B	

Assumptions:

Users	A and	B	share	domain	parameters	(p,	q,	g)	and	

obtain	each	other’s public	keys.	

User	A has	a private	key	Xa	and	public	key	Ya

User	B	has	a private	key	Xb	and	public	key	Yb

Calculations:

User	A calculates	the	value	of	the	shared	secret	Z =	

Yb^Xa	mod	p

13

User B calculates the value of the shared secret

Z =	Ya^Xb	mod	p

Example 2:

User	B	calculates	the	value	of	the	shared	secret	Z based	

on the private key Xb value and public Ya value using

Z =	Ya^Xb	mod	p

Xb = 7433D90B61EA231F2350ADE584EE047D-
DC8116D077BB6B6977CAAE2DDE399545

Z =	1D0D34D49D5F613892611DC620D66D80F2690249D
474248B4CA4863D2E5EA2F722E9C98B91D70BC0E791BC3
AFB5F105F518E749FDAC9A0374DD340B8D369409BAB061
EEE708672F6954883F4D21311A5331E6DABA2E4EB620DB
DCA8343F7033E8BB3C1929DD406250D4E4AAECE1B063
CABB5B82966B53AFBA82DEEFC969D24888B44CCE8ECCC
3F5F1BE3D4CE1AC5E10A9F38121ABDA08F55301E5495A6
AD78C80562E501DFA51DEACEEDFB5698722AC9FE7B971
6F60956C0B06EA069C91AFBC26C07831F7FF0764F2818
A54FFD849D4E679BD4F580E20CBD3FAB0BE831020C67CC
4350B996DDDCFC8D88021AF0804C4099C3A04676E52A
EAA13A7212A3640AF2

3.5.2 DERIVATION OF THE KEY MATERIAL
FROM THE SHARED SECRET Z

To derive the key material (contact key and integrity check

key),	it	is	necessary	to	use	a cryptography	function	for	key	

generation with necessary length from value Z.

For this derivation we use the algorithm described in RFC

2631, chapter 2.1.2

It	 is	possible	 to	generate	a practically	unlimited	amount	

of	key	material	KM	from	the	Z value	using	the	following	

algorithm:

KM	=	H(Z ||	OTHER_INFO)

Where	H	 is	a hash	 function	and	OTHER_INFO	 is	an	ASN.

1/DER structure.

3.5.2.1 CONTACT KEY

Contact	key	CK	has	a length	of	128	bit	(AES).

The used hash function H is SHA1. From the 160 bit long

hash	value,	we	use	128	bits	 from	the	beginning	as	a CK	

key value.

Structure of OTHER_INFO is as follows:

static uint8_t DER_OTHER_INFO[] = {
0x30, 0x1B, // sequence length 27
 // keyInfo
0x30, 0x11, // sequence length 17
0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x01, 0x02,
// algorithm OID 2.16.840.1.101.3.4.1.2 AES 128 CBC
0x04, 0x04, 0x00, 0x00, 0x00, 0x00,// counter
0xA2, 0x06, 0x04, 0x04, 0x00, 0x00, 0x00, 0x80 //
suppPubInfo EXPLICIT

};

Example 3:

CK	=	sha1(Z ||	‘30	1B	30	11	06	09	60	86	48	01	65	03	04	01	

02 04 04 00 00 00 00 A2 06 04 04 00 00 00 80’)

The	CK	key	value	for	the	shared	secret	Z mentioned	in	

example 2:

CK = 5FAD22F98B27648BE55F0B40D58E4FA0

3.5.2.2 KEY FOR INTEGRITY CHECKS

Key for CKhmac	integrity	checks	has	a length	of	256	bit.

The algorithm for the message integrity control is HMAC

with SHA256,

OID = {iso(1) member-body(2) us(840) rsadsi(113549)

digestAlgorithm(2) hmacWithSHA256(9)}

The used hash function H is SHA256, the entire hash value

is used for CKhmac key value.

Structure OTHER_INFO is as follows:

static uint8_t DER_OTHER_INFO_HMAC[] = {
0x30, 0x1A, // sequence length 26
// keyInfo
0x30, 0x10, // sequence length 16
0x06, 0x08, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D,
0x02, 0x09,
// algorithm OID 1.2.840.113549.2.9 – PBKDF2 HMAC
with SHA256
0x04, 0x04, 0x00, 0x00, 0x00, 0x01, // counter
0xA2, 0x06, 0x04, 0x04, 0x00, 0x00, 0x01, 0x00 //
suppPubInfo EXPLICIT
};

Example 4:

CKhmac key	value	for	shared	secret	Z mentioned	in	

example 2:

CKhmac = F180BE4E4196A7FE9AA3090046F732DFC
12D2526F0CC4E3996D842F5230909F2

3.5.3 MESSAGE KEY (MK) GENERATION

For	every	message	a random	MK	key	is	generated	=	RND	

(16) of 128 bit length. Platform based random number

generators are used for key generation.

3.5.4 DATA PADDING

Data is padded to become an undivided multiple of

16 octets (byte padding) prior to the encryption process.

Byte padding is done according to PKCS#7, described

in RFC 5652, chapter 6.3. – messages are padded by

concatenation with (16 – (length_message mod 16))

octets with value (16 – (length_message mod 16)).

Example 5:

If the data is 1 byte long, it is concatenated with 15 bites

'0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F '

If the data is 16 bytes long, it is concatenated with 16 bites

'10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10'

If the data is 26 bytes long, it is concatenated with 6 bites

'06 06 06 06 06 06'

14

3.5.5 KEY ENCRYPTION

For message MK key encryption of 128 bit length, an

AES128 algorithm is used (FIPS PUB 197) in mode ECB

according to NIST SP 800-38A, chapter 6.1.

Padding is not used before key encryption. Keys have

a fixed	length	of	128	bits.

Initialization vector is not used in the ECB mode

eMK = ENC-ECB[CK](MK)

3.5.6 MESSAGE ENCRYPTION

3.5.6.1 MESSAGE PREPARATION

 All text messages T are converted to the Unicode

character set with UTF-8 codding according to RFC 3629,

so that text compatibility is achieved among all platforms.

Before	 encryption,	 a time	 stamp	 TS	 is	 taken	 (number	

of milliseconds from midnight 1.1.1970 UTC). This

timestamp	is	coded	as	TS’,	4	octets	with	„big	endian”	bite	

organization to achieve compatibility among all platforms.

TS’ are added to the end of messages.

Messages with TS’ stamps are padded according to

PKCS#7.

3.5.6.2 ENCRYPTION

A random	 MK	 key	 is	 generated	 for	 every	 message	 T.	

MK = RND(16) of 128 bit length.

For message text encryption an AES-128 algorithm is used

(FIPS PUB 197) in mode CBC according to NIST SP 800-

38A, chapter 6.2.

Initialization vector IV has the value of 0 (IV = '00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00') for all messages.

Use of an identical value IV for all encrypted messages is

not	a problem	because	every	message	is	encrypted	with	

a different,	randomly	generated	key.

eT	=	ENC-CBC[MK,IV](utf8(T)	||	TS’)

Example 6:

• T is an open message text

•	 MK	is	a message	encryption	key	

•	 CK	is	a contact	key	calculated	in	example	3	

•	 	eMK	 is	 a key	 used	 for	 message	 encryption	

and is encrypted with CK contact key

• TS' is an encoded time stamp

• eT is an encrypted message

T = “Privacy exists”
utf8(T) = 5072697661637920657869737473
MK = 11121314212223243132333441424344
(hex string)
CK = 5FAD22F98B27648BE55F0B40D58E4FA0
eMK = 874B7E0985282C274F63161987BBC09D
TS’ = 12345678

utf8(T)	||	TS’	||	padding	=	
5072697661637920657869737473123456780E0E0E
0E0E0E0E0E0E0E0E0E0E0E
eT = B8EB1C3D985D2D92A8C574C85ABE49B7
C1FF8BCAC2B60E1128AF0AB5E2BD0182

3.5.7 MESSAGE INTEGRITY

Two independent mechanisms are used to ensure

integrity, authenticity and correct message sequencing,

which are all important components in detection and

elimination of active attacks.

• Cryptographic authentication HMAC code of the

entire JSON message

• Sequence numbering of sent messages

3.5.7.1 AUTHENTICATION CODE HMAC

Encrypt-then-MAC mechanism is used. Encrypted data is

provided with an authentication code calculated using the

HMAC-SHA256	algorithm	based	on	 the	HMAC	definition	

according to RFC 2104 and the extension for the use of

hash algorithms SHA2 according to RFC 4868.

	 MAC	=	H(K XOR	opad,	H(K XOR	ipad,	text))

where
	 	H	is	a hash	function	SHA-256,	according	to	FIPS	PUB	

180-4, chapter 6.2
Ipad	is	a sequence	of	64	octets	with	the	same	value	
0x36
Opad	is	a sequence	of	64	octets	with	the	same	value	
0x5C
K is	a CKhmac 256 bit key

Note: Original HMAC specification described in RFC 2104 uses hash
algorithm MD5 or SHA1.

3.5.7.2 MESSAGE NUMBERING AND IDENTIFICATION

Every	 message	 M	 is	 identified	 within	 a XMPP/JSON	

message	using	256	bit	 identification	messageld,	which	is	

randomly generated.

Message	sequence	is	numbered	with	a 128	bit	sequenceld,	

which is randomly initialized and incremented with every

sent message.

3.5.8	 RECEIVING	AND	DECRYPTING	A MESSAGE

3.5.8.1 INTEGRITY CHECK OF RECEIVED MESSAGES

Before	messages	can	be	decrypted,	the	integrity	of	a JSON	

message M is checked using an HMAC calculation and via

comparison with the relevant value of the authentication

message code.

HMAC’ = HMAC-SHA256(CKhmac, M)

Should the values of the sent authentication code and

the value of the authentication code calculated by the

recipient not match, an active attack would be detected.

15

Such	an	attack	might	be	 in	a form	of	a changed	or	 fake	

message.	In	that	case	the	recipient’s BabelApp	application	

would	 not	 decrypt	 the	 message	 (to	 prevent	 a possible	

data leak via the side channels when displaying error

messages)	and	would	display	a warning.

If	 the	 recipient	 receives	 a message	 with	 an	 incorrect	

sequence	number,	a warning	is	displayed.

3.5.8.2 MESSAGE DECRYPTION

Recipients	first	decrypt	 the	message	MK	key	with	which	

the message was encrypted. It is done using the CK key,

which is shared by the recipient and the sender.

MK = DEC-ECB[CK](eMK)

Recipients decrypt the message eT using MK, initializing

vector IV = 0

T’ = DEC-CBC[MK,IV](eT)

By	cutting	off	the	last	4	bites	T’(time	stamp)	and	decoding	

the UTF-8 you get the message T.

3.5.9 ATTACHMENT ENCRYPTION

BabelApp allows users to send encrypted attachments

(documents of any type). Attachments are encrypted

using the same MK key as the message itself, however,

attachments and messages are sent separately.

Attachment metadata is sent along with the message.

• Non-encrypted metadata – attachment

identification,	attachment	hash	and	a length	of	

the attachment in bites.

• Individually encrypted metadata – type, name

and miniature (e.g. an attachment preview)

Metadata is encrypted with the same MK key as the

message.

Messages can contain metadata about more than one

attachment.

The	sender	generates	a random	initialization	vector	for	

attachment encryption:

IVData = RND(16)

The sender encrypts Data using the MK key and IVData and

attaches the IVData in front of the encrypted data.

eData = IVData	||	ENC-CBC[MK,	IVData](Data)

The sender calculates hash of eData for integrity check:

hash = sha256(eData)

The sender calculates the length of eData in bites :

length = len(eData)

The sender uploads the eData to the server and receives

identificator		IDfile.

The sender generates 3 random initialization vectors for

the encrypted metadata:

IVName = RND(16)

IVType = RND(16)

IVThumbnail = RND(16)

The sender encrypts the type, name and attachment

miniature using the MK key and the corresponding

initialization vector IVType, IVName, IVThumbnail:

eName = IVName	||	ENC-CBC[MK,	IVName]
(utf8encode(Name))

eType = IVType	||	ENC-CBC[MK	IVType](utf8encode(Type))

eThumbnail = IVThumbnail	||	ENC-CBC[MK,	IVThumbnail]

(Thumbnail)

The sender sends out attachment metadata IDfile, eName,

eType, eThumbnail, hash and length via the JSON message

with an integrity check (please refer to 3.5.7).

3.5.10 ATTACHMENT DECRYPTION

Should	a message	with	attachment	metadata	be	received,	

the	attachment	identificator	IDfile	is	used	to	identify	and	

download the encrypted attachment data eData from the

server.

The recipient calculates the hash of eData and compares

it with the corresponding hash value, which is part of the

message metadata.

hash’ = sha256(eData)

hash’ == hash ; Should the values vary, the recipient's
application interrupts the processing, cancels the
attachment and displays a warning

The recipient separates the initialization vector IVData

from	the	first	16	bites	of	edata:

 IVData	||	eData’	=	eData

and uses the MK key to decrypt the eData' and obtain the

decrypted values of Data:

 Data = DEC-CBC[MK, IVData](eData’)

3.5.11	 	KEY	TRANSFER	BETWEEN	USER’S DEVICES	

Every BabelApp user can have multiple devices registered

under their account. All the devices share the D-H value of

the	user’s key	pair.	

For better understanding, the newly registered device will

be referred to as the ND and the previously registered device

as the OD.

The user generates DH key pair on all of their devices and

registers them with his/her account on the BabelApp server.

If the server has any devices already registered under the

account,	 the	server	returns	a warning	message	along	with	

a contact	GUID	and	the	public	part	of	the	DH	key.

The user can choose whether they prefer to transfer the

previous DH key to the newly registered device (ND), or to re-

write the previous keys with new ones which would disable

all previously registered devices and revoke the old keys.

3.5.11.1 KEY TRANSFER FROM THE OD TO THE ND

It is presumed that the already authenticated user has access

to both the OD and ND and that both devices have internet

16

connection and are on-line. For the key transfer to happen

it	is	necessary	to	type	a 5-digit	code	displayed	on	the	ND	to	

the OD so that the potential attacker would need to possess

not only the server authentication information but also both

devices	in	order	to	perform	a successful	attack.	

If the user chooses to transfer the old keys to the newly

registered device (ND), an authentication PIN is generated

on	the	ND	using	the	shared	secret	Z calculated	based	on	

the private part of the DH key pair of the ND and the public

part of the DH key pair of the OD sent by the server to the

ND	in	the	error	message.	The	calculation	of	value	Z is	an	

analogical process described in chapter 3.5.1.4.

The	5-digit	PIN	value	is	calculated	from	the	Z value:

PIN = SHA1(Z) mod 100000

The server requests the DH key pair transfer from the OD

and	as	a part	of	 the	 request	also	 sends	 the	public	part	of	

the DH key of the ND. The OD prompts the user to enter

the authentication PIN, which was generated and displayed

on the ND. The user enters the PIN to the OD, which

independently calculates the value from the same data as

the ND and compares it with the PIN value entered.

In case the values match (PIN´ = PIN), the following steps

are taken by the OD:

a)	 	Calculates	the	shared	secret	Z based	on	the	

private part of the DH key pair of the OD

and the public part of the DH key of the ND.

The	calculation	of	the	value	Z is	an	analogical	

process described in chapter 3.5.1.4.

b)	 	Generates	a 256	bit	AES	encryption	key	for	

private key encryption.

c) Encodes the DH private key of the OD and its

identification	GUID	into	ASN.1	structure	as	

specified	in	PKCS#8.

d) Analogically encrypts the DH key pair using the

message key as described in chapter 3.5.6.

e) Provides it with an HMAC signature, analogically,

as described in chapter 3.5.7.1.

f) Sends it out via the server to the ND.

The ND checks the integrity and authenticity of the

message by verifying the HMAC signature validity and if

successful, proceeds with the following:

a) Analogically decrypts the DH key pair, as

described in chapter 3.5.8.2.

b) Compares the GUID with the value received

in the server error message sent during the

registration process.

c)	 	Verifies	that	there	is	an	exact	match	in	between	

the public part of the DH key pair and the value

used for PIN calculation.

In case the entire check process is successful, the ND

deletes its generated DH key pair and substitutes it with

the newly received DH key pair.

The	ND	 sends	 a new	 registration	 request	 to	 the	 server,	

this time with the received (OD) DH key pair.

3.5.11.2 OVERWRITING THE KEYS
IN USE WITH NEW ONES

If	a user	chooses	to	overwrite	the	keys	in	use	with	a new	set	

of keys, the server deletes all their previously registered

devices and revokes the keys.

3.6 APPLICATION ENCRYPTION OF DATA STORED ON BABELAPP DEVICES

Data is stored on BabelApp devices in an encrypted form.

Data means messages, attachments, encrypted message

keys and encrypted device keys – which are used to encrypt

/ decrypt message keys and private parts of DH key pairs.

3.6.1 SQLITE DATABASE

All conversations (sent or received) are stored in the

SQLite database. All items are saved into the database in

an encrypted form, as described in 3.6.9. All documents

(sent and downloaded attachments) are stored on

devices	as	encrypted	files	 in	the	BabelApp	sandbox	file	

system, as described in 3.6.9.

3.6.2 USER PASSWORD

The foundation of the BabelApp application security is

a strong	 user	 password.	 Recommendations	 on	 how	 to	

choose	a password	are	in	chapter	5.1.

The password is used for two things:

• Derivation	 of	 a key	 which	 is	 then	 used	 for	

encryption and decryption of the Device key

• User authentication in the BabelApp client

application

The password needs to be typed in in the following situations:

Windows PC or macOS:
• For login to the application after startup, or

application lockdown

Mobile devices with iOS and Android:
• During BabelApp application startup – either after

a device	restart	or	after	the	application	has	been	

removed from the device memory

• In case of repeated unsuccessful PIN entry or

Fingerprint scan

17

3.6.3 DEVICE KEY

Device Key DK is unique for every device and generated

as	a random	256	bit	AES	key:

DK = RND(32)

In case the BabelApp application is not running, DK is

encrypted	(eDK)	using	a 256bit	AES	key	PK,	derived	from	

the	user’s password	and	randomly	generated	salt	value:

PK = PBKDF2[hmacWithSHA256](password_user, salt,
numberof_itterations, 256)

eDK = ENC_ECB[PK](DK)

After BabelApp client startup and password entry the PK

key is calculated. Using the PK it is now possible to decrypt

the DK key:

DK= DEC-ECB[PK](eDK)

The decrypted DK key remains in the device memory as long

as the application is running – even if in the background.

3.6.4 USER AUTHENTICATION TO THE
BABELAPP CLIENT APPLICATION

User authentication to the BabelApp client is based on

a password	entry	and	comparison	of	the	calculated	value	

with the KCV value stored on the device. The KCV value is

derived from device key DK.

Assuming the DK key has been decrypted as described in

3.6.3., the KCV value is then calculated by an encryption of

a constant	using	the	AES	algorithm	with	DK	in	ECB	mode:

 KCV = ENC_ECB[DK](constant)

If the stored and the calculated KCV values match, the user

is successfully authenticated and the application will unlock.

3.6.5	 USER’S DH	KEYS

Every	 user	 owns	 a DH	 key	 pair	 –	 private	 key	 X	 and	

corresponding public key Y, which is registered with

the BabelApp server. DH keys are generated on the

user’s device	and	possibly	shared	among	their	devices,	as	

described in chapter 3.5.11.

Private	key	X	is	stored	on	the	user’s device	in	an	encrypted	

form. For the X key encryption an AES algorithm in ECB

mode and the device DK key are used.

 eX = ENC-ECB[DK](X)

Private key X is used to establish a key agreement on the

contact key CK value.

3.6.6 CONTACTS’ KEYS

Contacts’ keys CK (and keys for integrity checks) are

calculated based on the public part of the DH contact key

and private DH key as described in 3.5.2.

Contact keys are stored on users’ devices in an encrypted

form. For CK key encryption an AES algorithm in an ECB

mode and device DK key are used:

eCK = ENC-ECB[DK](CK)

CK keys are used for encryption and decryption of message

keys MK. Message keys MK are used for encryption and

decryption of the actual conversations and are unique for

every contact.

3.6.7 UNLOCKING THE BABELAPP MOBILE
CLIENT	USING	A PIN		

After authenticating the user to the mobile client by

entering their password, the DK key is decrypted and kept

in memory while the application is running. For security

reasons, it is advisable to either always lock the application

manually when inactive or activate the automatic locking

of	the	application	after	a set	time	period	of	inactivity.

It is not very comfortable to type in the strong password

(chapter 5.1) every time when unlocking the client

application. That is why we implemented the option to

lock and unlock the application in an authenticated state

(DK	key	decrypted)	using	a 4-digit	PIN.

The PIN code can be enabled / disabled or changed in the

application after successfully entering the password.

Unlocking the application is based on PIN entry and

comparison of the calculated and stored PCV value,

cryptographically derived from the PIN value and randomly

chosen salt value generated using the PBKDF2 function:

 PCV = PBKDF2[hmacWithSHA1]

(PIN, salt, number_of_itterations, 128)

If the stored and calculated PCV values match, the

application will unlock.

Note:
Since typing on a PC with Windows and macOS is a lot easier, desktop
applications do not have the PIN mechanism implemented and the strong
password has to be entered when unlocking the application.

3.6.8 UNLOCKING OF THE BABELAPP MOBILE
CLIENT	USING	A FINGERPRINT

With	 mobile	 devices	 that	 support	 fingerprint	

authentication, it is possible to use it as an alternative

instead	of	a PIN	number.

3.6.9 ENCRYPTION OF MESSAGES AND
ATTACHMENTS STORED ON THE DEVICE

Every	 message	 T	 is	 encrypted	 using	 a random	MK	 key.	

Key	MK	 is	protected	 (encrypted)	by	a contact	key	CK,	as	

described in 3.5.6.2.

Before received messages can be stored, the MK key has

to be decrypted as described in 3.5.8.2.

 MK = DEC-ECB[CK](eMK)

18

Then the MK key is encrypted using the device key DK:

 eMK = ENC-ECB[DK](MK)

Once completed, the encrypted message and encrypted

eMK key are stored on the device.

Note:
As seen in the description, messages (and attachments) are kept encrypted
with the same MK key both during the transport and when stored on the
device. MK is protected by an additional encryption layer in the application.

3.6.10 DECRYPTION OF MESSAGES AND
ATTACHMENTS STORED ON THE DEVICE

AES	key	PK	is	derived	from	the	user’s password	and	is	used	

to decrypt the DK key, as described in 3.6.3.

Using the DK key, it is then possible to decrypt all the

Message eMK keys:

 MK = DEC-ECB[DK](eMK)

Which allows to analogically decrypt all the messages eT,

as described in 3.5.8.2.:

 T = DEC-CBC[MK,IV](eT), where IV=0

It is also possible to analogically decrypt attachment

metadata and attached documents as described in 3.5.10.

3.6.11 SYSTEM ENCRYPTION

The	 core	 of	 BabelApp’s security	 is	 the	 application	

encryption, which is independent from the operating

system, however, some operating systems allow the

developers	 to	 add	 a system	 encryption	 as	 an	 additional	

security layer.

3.6.11.1 iOS

All data on the iOS platform is encrypted in the device

flash	memory	using	a hierarchical	key	structure,	described	

in the scheme below:

A requirement	 for	 the	 use	of	 system	encryption	on	 iOS	

devices	is	that	a password	is	setup	and	used.

iOS is purposely slowing down password entry attempts

(to aprox. 80ms between attempts) to protect users

against brute force attacks. Brute force attacks are

performed directly on the device since passwords are

combined with UID in the processor.

Level of the system cryptography protection for messages

stored in the SQLite database and for attachments stored

in	 the	application	 system	file	 sandbox	 is	 set	up	 to	value	

NSFileProtectionCompleteUntilFirstUserAuthentication,

which	 decrypts	 the	 Class	 Key	 as	 soon	 as	 the	 user’s iOS	

password is typed in and keeps it in its memory even after

the application is locked.

A good	compromise	between	the	discomfort	of	frequent	

password entry and security can be achieved by the use of

fingerprint	authentication	(iPhone	5s,	iPad	3	and	higher).	

Relatively low FAR of the biometric authentication is

compensated for by the necessity to type in the password

after	5	unsuccessful	fingerprint	authentication	attempts.

3.6.11.2 ANDROID

System encryption is not used.

3.6.11.3 WINDOWS

System encryption is not used.

3.6.11.4 macOS

System encryption is not used.

System encryption in iOS

Device Key

Password Key

Some classes can be
differentiated only using a key
derived from a combination
of an UID and user password

Each class has
its own key

Each file has
 its own key

HW key in A7, to protect
the flash memory from simply
being removed and installed

in a different iPhone

Class Key Data souboruFile Key

File Metadata

File System Key

For deletion
(to prevent access) of

 all data from the device

19

4. SERVER PLATFORM

The BabelApp server requires the following to run: (please refer to the BabelApp Implementation guide for details):

4.1 HARDWARE

PC server with CPU Intel x86/x64, clocked to at least 2 GHz

• Memory – at least 3 GB

• Disc – free space of at least 10 GB

• Network Interface Controller – 100 Mbps or higher

The server can be physical or virtual. Tested

virtualization platforms are VMware and Hyper-V.

4.2 OPERATING SYSTEMS

BabelApp runs on Microsoft Windows Server or Linux:

Microsoft Windows

• Windows Server 2008 R2

• Windows Server 2012

• Windows Server 2012 R2

Linux

• Oracle Linux Server 6.x

• Red Hat Enterprise Linux 6.x

• CentOS 6.x

4.3 JAVA

BabelApp server requires Java installation 1.7, 32 bit or higher.

4.4 DATABASE

The	BabelApp	server	uses	a PostgreSQL	database	system,	

minimally version 9.3, preferably 9.5.

4.4.1 OPERATING SYSTEM ACCOUNT FOR
POSTGRESQL

Linux: the PostgreSQL server must be started under

a dedicated	 unix	 account	 with	 a strong	 password,	 not	

under	the	root	account,	or	a different	user	account.	Such	

a dedicated	account	should	only	own	data	that	is	managed	

by the server and cannot be shared with other services.

Windows: server service PostgreSQL must be started

under	a dedicated	account,	which	has	 the	 rights	 to	only	

access	 the	 data	 it	 manages.	 Such	 a dedicated	 account	

must have the rights to read in all directories that form

the path to service directories and write permisison in the

data folder.

4.4.2 SUPERUSER ACCOUNT

It	 is	 necessary	 to	 change	 the	 Superuser’s PostgreSQL	

(postgres:postgres) implicit name and password during the

installation	to	a strong	password	(command	ALTER	ROLE).	

ALTER	ROLE	postgres	WITH	PASSWORD	‘some_

strong_password’

4.4.3 BABELAPP DATABASE SETUP

It is necessary to set up three databases during the

installation:

•	 openfire

• babel

• babel_attachment

4.4.4 DATABASE ACCOUNT CREATION

Database	accounts	need	to	be	created	(user	with	a LOGIN	

privilege	role	to	a relevant	database)	and	strong	passwords	

should be used in all instances. Database accounts will be

named the same as the databases:

CREATE	USER	openfire	WITH	PASSWORD	strong_

password_1'

CREATE USER babel WITH PASSWORD strong_

password_2'

CREATE USER babel_attachment WITH PASSWORD

strong_password_2'

4.4.5 DATABASE ACCOUNT AUTHENTICATION TYPE

PostgreSQL	 supports	 a number	 of	 authentication	

methods,	which	are	given	by	the	pg_hba.conf	file,	placed	

in the root directory of the database server.

20

It	 is	 recommended	 to	 limit	 the	 connection	 to	 a local	

connection only and set the authentication method to

authenticate to the local server operating of the system.

Peer Authentication (for local authentication only)

In case the BabelApp server is installed on the same HW

(or the same virtual server) as PostgreSQL, it is possible to

use an authentication to local accounts of the operating

system.	It	is	a preferred	method	called	peer.

Database accounts are logically separated from user

accounts in the operating system. If the same accounts

are created both in the operating system and PostgreSQL,

it is possible to use the peer authentication method for

local connection.

Set up postgress.conf in
listen_addresses to an empty address list

Structure of pg_hba.conf for local connection:
TYPE DATABASE USER METHOD
local sameuser all peer

Password Authentication (for network authentication)

Password authentication with the md5 option

authenticates	the	client	using	a password,	which	is	hashed	

twice, once after concatenation with the user name and

for	a second	time	with	added	salt.

In postgress.conf, set up

listen_addresses to an allowed network client address, for
example (IPv4) 192.168.1.0/24

port to TCP port, implicitly 5432

Structure of pg_hba.conf for network connection:

It is assumed that the client (BabelApp server) runs on the
following address 192.168.1.0/24

TYPE DATABASE USER CIDR-ADDRESS METHOD

host openfire openfire 192.168.1.0/24 md5

host babel babel 192.168.1.0/24 md5

host babel_
attachment

babel_
attachment

192.168.1.0/24 md5

4.5 OPENFIRE

The	 BabelApp	 server	 uses	 XMPP	 Openfire	 server	

http://www.igniterealtime.org/projects/openfire/,	 which	

is implemented in the Java environment and licensed

under	the	Open	Source	Apache	License.	Openfire	allows	

for feature expansion using plug-in modules (plugins).

BabelApp features are realized through the plug in

module babel.jar.

21

5. SECURITY REQUIREMENTS AND RECOMMENDATIONS

5.1 STRONG PASSWORD

A strong	 password	 should	 have	 a minimum	

entropy of 70 bits.

The	 following	 table	 shows	 a passwords’	

character’s entropy,	if	the	character	is	randomly	

chosen	 from	 a subset	 of	 equally	 probable	

characters:

• Numbers (10 characters),

entropy 3,32 bites/character

• Lowercase letters without accents

(26 characters), entropy 4,7 bits/character

• Uppercase letters without accents

(26 characters), entropy 4,7 bits/character

• Lowercase and uppercase letters without

accents (52 characters),

entropy 5,7 bits/character

• Lowercase and uppercase letters without

accents and numbers (62 characters),

entropy 5,95 bits/character

An	example	of	such	a password	is	a password,	

which	consists	of	a randomly	chosen	combination	

of lowercase and uppercase letters and numbers

with	a minimum	length	of	12	characters.

5.2 iOS

For mobile devices with iOS, the following security

requirements and recommendations apply:

Requirements

• iOS version 7.0 or later

• jailbreak not applied

•	 device	is	locked	using	a PIN	code

•	 	a strong	password	is	used	to	login	to	

BabelApp

Recommendations

• activate data deletion after 10 unsuccessful

PIN code entries

• use Touch-id to unlock the device

and	a strong	password	for	a code	lock

•	 	BabelApp	password	is	different	

from the device password

• Use touch-id for BabelApp login

5.3 ANDROID

For mobile devices with the Android operating system, the

following security requirements and recommendations apply:

Requirements

• android operating system version 4.01 or later

• root not applied

Recommendations

• android version of 5.0. with activated system data

encryption

• PIN code is activated

• do not use gestures for PIN entry

• activate remote data wipe (Google service)

• use Touch-id for unlocking the device

•	 	BabelApp	password	is	different	from	the	device	

password

5.4 WINDOWS

For PC devices with the Windows operating system, the

following security requirements and recommendations

apply:

Requirements

• minimum version of Windows is Vista

• Device does not contain any malicious software

and is protected against malicious software attacks

•	 A strong	password	is	used

•	 A strong	password	is	used	for	login	to	BabelApp

Recommendations

•	 	BabelApp	password	is	different	from	the	system	

password

• Minimum version of Windows is 7

5.5 macOS

For devices with macOS, the following security

requirements and recommendations apply:

Requirements

• Minimum version of macOS is 10.11

• Device does not contain any malicious software

and is protected against malicious software attacks

•	 A strong	password	is	used

•	 A strong	password	is	used	for	login	to	BabelApp

Recommendations

•	 	BabelApp	password	is	different	from	the	system	

password

www.babelapp.com

Developed by

	PRODUCT SPECIFICATIONS
	 BABELNET EDITIONS
	 MAIN ASPECTS
	 SUPPORTED DEVICES
	 MAIN COMMUNICATION SERVICES
	 ADMINISTRATION FEATURES

	SYSTEM ARCHITECTURE
	 SERVER COMPONENTS
	 ASYNCHRONOUS MESSAGING: MESSAGING SERVICE
	 ATTACHMENT DOWNLOAD SERVICE
	 ADDRESS BOOK
	 COMMUNICATION GATEWAY: API GATEWAY
	 MESSAGE SCHEDULER
	 PUSH NOTIFICATION GATEWAY
	 WEB ADMIN CONSOLE
	 CLIENT DASHBOARD

	 COMMUNICATION AMONG BABELNET PRO SERVERS
	 BABELNET NAME
	 REGISTRATION AMONG MULTIPLE SERVERS
	 SYNCHRONIZATION OF CONTACTS AMONGST MULTIPLE SERVERS
	 SENDING AND RECEIVING A MESSAGE

	 NETWORK AND COMMUNICATION
	 VIRTUAL BABELNET SERVERS AND SNI
	 BABELNET CLIENTS

	CRYPTOGRAPHY DESIGN
	 BASIS FOR THE CRYPTOGRAPHY DESIGN
	 CRYPTOGRAPHY MODEL
	 CRYPTOGRAPHY ALGORITHMS
	 CRYPTOGRAPHY PROTOCOLS
	 COMMUNICATION AMONG BABELNET CLIENT APPLICATIONS AND SERVERS
	 CLIENT REGISTRATION TO BABELNET SERVER USING OTP
	 CLIENT REGISTRATION TO A BABELNET SERVER USING AD SSO
	 PROOF OF THE D-H PRIVATE KEY POSSESSION
	 CLIENT AUTHENTICATION TO A BABELNET SERVER
	 KEY GENERATION
	 DERIVATION OF KEYS FROM PASSWORDS

	 APPLICATION COMMUNICATION ENCRYPTION
	 CONTACT KEY AGREEMENT
	 DOMAIN PARAMETERS
	 DH KEY GENERATION
	 PUBLIC KEY VALUE SERVER REGISTRATION
	 FINDING THE SHARED SECRET Z BETWEEN USERS A AND B

	 DERIVATION OF THE KEY MATERIAL FROM THE SHARED SECRET Z
	 CONTACT KEY
	 KEY FOR INTEGRITY CHECKS

	 MESSAGE KEY (MK) GENERATION
	 DATA PADDING
	 KEY ENCRYPTION
	 MESSAGE ENCRYPTION
	 MESSAGE PREPARATION
	 ENCRYPTION

	 MESSAGE INTEGRITY
	 AUTHENTICATION CODE HMAC
	 MESSAGE NUMBERING AND IDENTIFICATION

	 RECEIVING AND DECRYPTING A MESSAGE
	 INTEGRITY CHECK OF RECEIVED MESSAGES
	 MESSAGE DECRYPTION

	 ATTACHMENT ENCRYPTION
	 ATTACHMENT DECRYPTION
	 KEY TRANSFER BETWEEN USER’S DEVICES
	 KEY TRANSFER FROM THE OD TO THE ND
	 OVERWRITING THE KEYS IN USE WITH NEW ONES

	 APPLICATION ENCRYPTION OF DATA STORED ON BABELNET DEVICES
	 SQLITE DATABASE
	 USER PASSWORD
	 DEVICE KEY
	 USER AUTHENTICATION TO THE BABELNET CLIENT APPLICATION
	 USER’S DH KEYS
	 CONTACTS’ KEYS
	 UNLOCKING THE BABELNET MOBILE CLIENT USING A PIN
	 UNLOCKING OF THE BABELNET MOBILE CLIENT USING A FINGERPRINT
	 ENCRYPTION OF MESSAGES AND ATTACHMENTS STORED ON THE DEVICE
	 DECRYPTION OF MESSAGES AND ATTACHMENTS STORED ON THE DEVICE
	 SYSTEM ENCRYPTION
	 SYSTEM ENCRYPTION
	 iOS
	 ANDROID
	 WINDOWS
	 macOS

	SERVER PLATFORM
	 HARDWARE
	 OPERATING SYSTEMS
	 JAVA
	 DATABÁZE
	 OPERATING SYSTEM ACCOUNT FOR POSTGRESQL
	 SUPERUSER ACCOUNT
	 BABELNET DATABASE SETUP
	 DATABASE ACCOUNT CREATION
	 DATABASE ACCOUNT AUTHENTICATION TYPE

	 OPENFIRE

	SECURITY REQUIREMENTS AND RECOMMENDATIONS
	 STRONG PASSWORD
	 iOS
	 ANDROID
	 WINDOWS
	 macOS

